Publications - by Research Topic

Aerobic Oxidation Reactions: General References and Reviews

Quinone 1 e- and 2 e-/2 H+ Reduction Potentials: Identification and Analysis of Deviations from Systematic Scaling Relationships

Huynh, M. T.; Anson, C. W.; Cavell, A. C.; Stahl, S. S.; Hammes-Schiffer, S. J. Am. Chem. Soc. 2016, 138, 15903–15910.
DOI: 10.1021/jacs.6b05797 | PDF icon Supporting Info

Palladium-Catalyzed Aerobic Dehydrogenation of Cyclic Hydrocarbons for the Synthesis of Substituted Aromatics and Other Unsaturated Products

Iosub, A. V.; Stahl, S. S. ACS. Catal. 2016, 6, 8201-8213.
DOI: 10.1021/acscatal.6b02406

Co(salophen)-Catalyzed Aerobic Oxidation of p-Hydroquinone: Mechanism and Implications for Aerobic Oxidation Catalysis

Anson, C. W.; Ghosh, S.; Hammes-Schiffer, H.; Stahl, S. S. J. Am. Chem. Soc. 2016, 138, 4186-4193.
DOI: 10.1021/jacs.6b00254 | PDF icon Supporting Info

Catalytic Aerobic Dehydrogenation of Nitrogen Heterocycles Using Heterogeneous Cobalt Oxide Supported on Nitrogen-Doped Carbon

Iosub, A. V.; Stahl, S. S. Org. Lett. 2015, 17, 4404-4407.
DOI: 10.1021/acs.orglett.5b01790 | PDF icon Supporting Info

Copper-Catalyzed Aerobic Oxidations of Organic Molecules: Pathways for Two-Electron Oxidation with a Four-Electron Oxidant and a One-Electron Redox-Active Catalyst

McCann, S. D.; Stahl, S. S. Acc. Chem. Res. 2015, 48, 1756–1766.
DOI: 10.1021/acs.accounts.5b00060

Practical Aerobic Alcohol Oxidation with Cu/Nitroxyl and Nitroxyl/NOx Catalyst Systems

Miles, K. C.; Stahl, S. S. Aldrichimica Acta 2015, 48, 8-10.
| PDF icon Volume 48

Experimental Limiting Oxygen Concentrations for Nine Organic Solvents at Temperatures and Pressures Relevant to Aerobic Oxidations in the Pharmaceutical Industry

Osterberg, P. M.; Niemeier, J. K.; Welch, C. J.; Hawkins, J. M.; Martinelli, J. R.; Johnson, T. E.; Root, T. W; Stahl, S. S. Org. Process Res. Dev. 2015, 19, 1537–1543.
DOI: 10.1021/op500328f

Overcoming the "Oxidant Problem": Strategies to Use O2 as the Oxidant in Organometallic C-H Oxidation Reactions Catalyzed by Pd (and Cu).

Campbell, A. N.; Stahl, S. S. Acc. Chem. Res. 2012, 45, 851-863.
DOI: 10.1021/ar2002045

Copper-Catalyzed Aerobic Oxidative C-H Functionalizations: Trends and Mechanistic Insights.

Wendlandt, A. E.; Suess, A. M.; Stahl, S. S. Angew. Chem. Int. Ed. 2011, 50, 11062-11087.
DOI: 10.1002/anie.201103945

Palladium(II)-Catalyzed Alkene Functionalization via Nucleopalladation: Stereochemical Pathways and Enantioselective Catalytic Applications.

McDonald, R. I.; Liu, G.; Stahl, S. S. Chem. Rev. 2011, 111, 2981-3019.
DOI: 10.1021/cr100371y

Palladium-Catalyzed Oxidation Reactions: Comparison of Benzoquinone and Molecular Oxygen as Stoichiometric Oxidants.

Popp, B. V.; Stahl, S. S. In Organometallic Oxidation Catalysis, Meyer, F., Limberg, C. Eds.; Springer: New York, Topics in Organometallic Chemistry 2007, 22, 149-189.
DOI: 10.1007/3418_039

N-Heterocyclic Carbenes as Ligands for High-Oxidation-State Metal Complexes and Oxidation Catalysis.

Rogers, M. M.; Stahl, S. S. In N-Heterocyclic Carbenes in Transition Metal Catalysis, Glorius, F., Ed.; Springer: New York, Topics in Organometallic Chemistry 2007, 21, 21-46.
DOI: 10.1007/978-3-540-36930-1_2

Palladium-Catalyzed Oxidation of Organic Chemicals with O2.

Stahl, S. S. Science 2005, 309, 1824-1826.
DOI: 10.1126/science.1114666

Palladium Oxidase Catalysis: Selective Oxidation of Organic Chemicals via Direct Dioxygen-Coupled Catalytic Turnover.

Stahl, S. S. Angew. Chem. Int. Ed. 2004, 43, 3400-3420.
DOI: 10.1002/anie.200300630

Palladium-Catalyzed Oxidative Amination of Alkenes

Synthesis of Indole-2-carboxylate Derivatives via Palladium-Catalyzed Aerobic Amination of Aryl C–H Bonds

Clagg, K.; Hou, H.; Weinstein, A. B.; Russell, D.; Stahl, S. S.; Koenig, S. G. Org. Lett. 2016, 18, 3586–3589.
DOI: 10.1021/acs.orglett.6b01592 | PDF icon Supporting Info

Synthesis of Vicinal Aminoalcohols by Stereoselective Aza-Wacker Cyclizations: Access to (−)-Acosamine by Redox Relay

Weinstein, A. B.; Schuman, D. P.; Tan, Z. X.; Stahl, S. S. Angew. Chem. Int. Ed. 2013, 51, 11867-11870.
DOI: 10.1002/anie.201305926 | PDF icon Supporting Info

Palladium-Catalyzed Intermolecular Aminoacetoxylation of Alkenes and the Influence of PhI(OAc)2 on Aminopalladation Stereoselectivity

Martinez, C.; Wu, Y.; Weinstein, A. B.; Stahl, S. S.; Liu, G.; Muniz, K. J. Org. Chem. 2013, 78, 6309–6315.
DOI: 10.1021/jo400671q | PDF icon Supporting Info, | File Supporting Info 2, | File Supporting Info 3

Mechanistic Studies of Wacker-Type Amidocyclization of Alkenes Catalyzed by (IMes)Pd(TFA)2(H2O): Kinetic and Stereochemical Implications of Proton Transfer.

Ye, X.; White, P. B.; Stahl, S. S. J. Org. Chem. 2013, 78, 2083-2090.
DOI: 10.1021/jo302266t | PDF icon Supporting Info

Reconciling the Stereochemical Course of Nucleopalladiation with the Development of Enantioselective Wacker-Type Cyclizations.

Weinstein, A. B.; Stahl, S. S. Angew. Chem. Int. Ed. 2012, 51, 11505-11509.
DOI: 10.1002/anie.201206702 | PDF icon Supporting Info

Intramolecular Pd(II)-Catalyzed Aerobic Oxidative Amination of Alkenes: Synthesis of Six-Membered N-Heterocycles.

Lu, Z.; Stahl, S. S. Org. Lett. 2012, 14, 1234-1237.
DOI: 10.1021/ol300030w | PDF icon Supporting Info

Stereoselective Synthesis of cis-2,5-Disubstituted Pyrrolidines via Wacker-Type Aerobic Oxidative Cyclization of Alkenes with tert-Butanesulfinamide Nucleophiles.

Redford, J. E.; McDonald, R. I.; Rigsby, M. L.; Wiensch, J. D.; Stahl, S. S. Org. Lett. 2012, 14, 1242-1245.
DOI: 10.1021/ol3000519 | PDF icon Supporting Info

Reversible Alkene Insertion into the Pd-N Bond of Pd(II)-Sulfonamidates and Implications for Catalytic Amidation Reactions.

White, P. B.; Stahl, S. S. J. Am. Chem. Soc. 2011, 133, 18594-18597.
DOI: 10.1021/ja208560h | PDF icon 11JA White SI1.pdf, | PDF icon Supporting Info (NMR)

Regiocontrolled aerobic oxidative coupling of indoles and benzene using Pd catalysts with 4,5-diazafluorene ligands.

Campbell, A. N.; Meyer, E. B.; Stahl, S. S. Chem. Commun. 2011, 47, 10257-10259.
DOI: 10.1039/C1CC13632A | PDF icon Supporting Info

Enantioselective Pd(II)-Catalyzed Aerobic Oxidative Amidation of Alkenes and Insights into the Role of Electronic Asymmetry in Pyridine-Oxazoline Ligands

McDonald, R. I.; White, P. B.; Weinstein, A. B.; Tam, C. P.; Stahl, S. S. Org. Lett. 2011, 13, 2830-2833.
DOI: 10.1021/ol200784y | PDF icon Supporting Info (Experimental), | PDF icon Supporting Info (NMR)

Mechanistic Studies of Wacker-Type Intramolecular Aerobic Oxidative Amination of Alkenes Catalyzed by Pd(OAc)2/Pyridine.

Ye, X.; Liu, G.; Popp, B. V.; Stahl, S. S. J. Org. Chem. 2011, 76, 1031-1044.
DOI: 10.1021/jo102338a | PDF icon Supporting Info

Modular Synthesis of 1,2-Diamine Derivatives by Palladium-Catalyzed Aerobic Oxidative Cyclization of Allylic Sulfamides.

McDonald, R. I.; Stahl, S. S. Angew. Chem. Int. Ed. 2010, 49, 5529-5532.
DOI: 10.1002/anie.200906342 | PDF icon Supporting Info

Synthesis of Pd(II) Complexes Bearing an Enantiomerically-Resolved Seven-Membered N-Heterocyclic Carbene Ligands and Initial Studies of their Use in Asymmetric Wacker-Type Oxidative Cyclization Reactions.

Scarborough, C. C.; Bergant, A.;Sazamaa, G.T.; Guzeia, I.A.; Spencera, L.C.; Stahl, S. S. Tetrahedron 2009, 65, 5084-5092.
DOI: 10.1016/j.tet.2009.04.072

Synthesis and Isolation of a Stable, Axially-Chiral Seven-Membered N-Heterocyclic Carbene.

Scarborough, C. C.; Guzei, I. A.; Stahl, S. S. Dalton Trans. 2009, 2284-2286.
DOI: 10.1039/B902460C | PDF icon Supporting Info

Palladium-Catalyzed Oxidative Amination of Alkenes: Improved Catalyst Reoxidation Enables the Use of Alkene as the Limiting Reagent

Rogers, M. M.; Kotov, V.; Chatwichien, J.; Stahl, S. S. Org. Lett. 2007, 9, 4331-4334.
DOI: 10.1021/ol701903r | PDF icon Supporting Info

The Two-Faced Reactivity of Alkenes: Cis - Versus Trans- Aminopalladation in Aerobic Pd- Catalyzed Intramolecular Aza-Wacker Reactions.

Liu, G.; Stahl, S. S. J. Am. Chem. Soc. 2007, 129, 6328-6335.
DOI: 10.1021/ja070424u | PDF icon Supporting Info

Palladium-Catalyzed Aerobic Oxidative Amination of Alkenes: Development of Intra- and Intermolecular Aza-Wacker Reactions.

Kotov, V.; Scarborough , C. C.; Stahl, S. S. Inorg. Chem. 2007, 46, 1910-1923.
DOI: 10.1021/ic061997v

Synthesis of Pyrrolidines via Palladium(II)-Catalyzed Aerobic Oxidative Carboamination of Butyl Vinyl Ether and Styrenes with Allyl Tosylamides.

Scarborough , C. C.; Stahl, S. S. Org. Lett. 2006, 8, 3251-3254.
DOI: 10.1021/ol061057e | PDF icon Supporting Info

Highly Regioselective Pd-Catalyzed Intermolecular Aminoacetoxylation of Alkenes and Evidence for cis -Aminopalladation and SN2 C-O Bond Formation.

Liu, G.; Stahl, S. S. J. Am. Chem. Soc. 2006, 128, 7179-7181.
DOI: 10.1021/ja061706h | PDF icon Supporting Info (Experimental), | PDF icon Supporting Info (NMR)

Aerobic Intramolecular Oxidative Amination of Alkenes Catalyzed by NHC-Coordinated Palladium Complexes.

Rogers, M. M.; Wendlandt, J. E.; Guzei, I. A.; Stahl, S. S. Org. Lett. 2006, 8, 2257-2260.
DOI: 10.1021/ol060327q | PDF icon Supporting Info (Experimental), | PDF icon Supporting Info (NMR)

Brønsted Base-Modulated Regioselectivity in the Aerobic Oxidative Amination of Styrene Catalyzed by Palladium.

Timokhin, V. I. ; Stahl, S. S. J. Am. Chem. Soc. 2005, 127, 17888-17893.
DOI: 10.1021/ja0562806 | PDF icon Supporting Info

Development of 7-Membered N-Heterocyclic Carbene Ligands for Transition Metals.

Scarborough, C. C.; Popp, B. V.; Guzei, I. A.; Stahl, S. S. J. Organomet. Chem. 2005, 690, 6143-6155.
DOI: 10.1016/j.jorganchem.2005.08.022

PalladiumII Complexes Possessing a Seven-Membered N-Heterocyclic Carbene Ligand.

Scarborough, C. C.; Grady, M. J. W.; Guzei, I. A.; Gandhi, B. A.; Bunel, E. E.; Stahl, S. S. Angew. Chem. Int. Ed. 2005, 44, 5269-5272.
DOI: 10.1002/anie.200501522

Aerobic Oxidative Amination of Unactivated Alkenes Catalyzed by Palladium.

Brice, J. L.; Harang, J. E.; Timokhin, V. I.; Anastasi, N. R.; Stahl, S. S. J. Am. Chem. Soc. 2005, 127, 2868-2869.
DOI: 10.1021/ja0433020 | PDF icon Supporting Info

Formation of Enamides via Palladium(II)-Catalyzed Vinyl Transfer from Vinyl Ethers to Nitrogen Nucleophiles.

Brice, J. l.; Meerdink, J. M.; Stahl, S. S. Org. Lett. 2004, 6, 1845-1848.
DOI: 10.1021/ol0494360 | PDF icon Supporting Info

Dioxygen-Coupled Oxidative Amination of Styrene.

Timokhin, V. I.; Anastasi, N. R.; Stahl, S. S. J. Am. Chem. Soc. 2003, 125, 12996-12997.
DOI: 10.1021/ja0362149 | PDF icon Supporting Info

Efficient Intramolecular Oxidative Amination of Olefins through Direct Dioxygen-Coupled Palladium Catalysis.

Fix, S. R.; Brice, J. L.; Stahl, S. S. Angew. Chem. Int. Ed. 2002, 41, 164-166.
DOI: 10.1002/1521-3773(20020104)41:1<164::AID-ANIE164>3.0.CO;2-B

Catalytic C-H Oxidation and Functionalization

Pd-Catalyzed Aerobic Oxidative Biaryl Coupling: Non-Redox Cocatalysis by Cu(OTf)2 and Discovery of Fe(OTf)3 as a Highly Effective Cocatalyst

Wang, D.; Stahl, S. S. J. Am. Chem. Soc. 2017, 139, 5704-5707.
DOI: 10.1021/jacs.7b01970 | PDF icon Supporting Info.pdf

Co/NHPI-mediated aerobic oxygenation of benzylic C–H Bonds in pharmaceutically relevant molecules

Hruszkewycz, D. P.; Miles, K. C.; Thiel, O. R.; Stahl, S. S. Chem. Sci. 2017, 8, 1282-1287.
DOI: 10.1039/C6SC03831J | PDF icon Supporting Info

Enantioselective cyanation of benzylic C–H bonds via copper-catalyzed radical relay

Zhang, W.; Wang, F.; McCann, S. D.; Wang, D.; Chen, P.; Stahl, S. S.; Liu, G. Science 2016, 353, 1014-1018.
DOI: 10.1126/science.aaf7783 | PDF icon Supporting Info

KetoABNO/NOx Cocatalytic Aerobic Oxidation of Aldehydes to Carboxylic Acids and Access to α-Chiral Carboxylic Acids via Sequential Asymmetric Hydroformylation/Oxidation

Miles, K. C.; Abrams, L. M.; Landis, C. R.; Stahl, S. S. Org. Lett. 2016, 18, 3590–3593.
DOI: 10.1021/acs.orglett.6b01598 | PDF icon Supporting Info

Diazafluorenone-Promoted Oxidation Catalysis: Insights into the Role of Bidentate Ligands in Pd-Catalyzed Aerobic Aza-Wacker Reactions

White, P. B.; Jaworski, J. N.; Geyunjian, H. Z.; Stahl, S. S. ACS Catal. 2016, 6, 3340-3348.
DOI: 10.1021/acscatal.6b00953 | PDF icon Supporting Info

Electrocatalytic Alcohol Oxidation with TEMPO and Bicyclic Nitroxyl Derivatives: Driving Force Trumps Steric Effects

Rafiee, M; Miles, K. C.; Stahl, S. S. J. Am. Chem. Soc. 2015, 137, 14751–14757.
DOI: 10.1021/jacs.5b09672 | PDF icon Supporting Info

Quinone-Catalyzed Selective Oxidation of Organic Molecules

Wendlandt, A. E.; Stahl, S. S. Angew. Chem. Int. Ed. 2015, 54, 14638-14658.
DOI: 10.1002/anie.201505017

Regioselective Aerobic Oxidative Heck Reactions with Electronically Unbiased Alkenes: Efficient Access to α-Alkyl Vinylarene

Zheng, C.; Stahl, S. S. Chem. Commun. 2015, 51, 12771–12774.
DOI: 10.1039/C5CC05312A | PDF icon Supporting Info

Modular o‑Quinone Catalyst System for Dehydrogenation of Tetrahydroquinolines under Ambient Conditions

Wendlandt, A. E.; Stahl, S. S. J. Am. Chem. Soc. 2014, 136, 11910–11913.
DOI: 10.1021/ja506546w | PDF icon Supporting Info, | File CIF

Palladium catalyzed aryl C–H amination with O2 via in situ formation of peroxide-based oxidant(s) from dioxane

Weinstein, A. B.; Stahl, S. S. Catal. Sci. Technol. 2014, 4, 4301-4307.
DOI: 10.1039/C4CY00764F | PDF icon Supporting Info

Pd-Catalyzed Aerobic Oxidative Coupling of Arenes: Evidence for Transmetalation between Two Pd(II)-Aryl Intermediates

Wang, D.; Izawa, Y.; Stahl, S. S. J. Am. Chem. Soc. 2014, 136, 9914-9917.
DOI: 10.1021/ja505405u | PDF icon Supporting Info

Oxidation Adjacent to C=X bonds by Dehydrogenation

Stahl, S. S.; Diao, T. Comp. Org. Synth. 2014, 7, 178-212.
DOI: 10.1016/B978-0-08-097742-3.00707-2

Bioinspired Aerobic Oxidation of Secondary Amines and Nitrogen Heterocycles with a Bifunctional Quinone Catalyst

Wendlandt, A. E.; Stahl, S. S. J. Am. Chem. Soc. 2014, 136, 506-512.
DOI: 10.1021/ja411692v | PDF icon Supporting Info, | File CIF

Pd-Catalyzed Semmler–Wolff Reactions for the Conversion of Substituted Cyclohexenone Oximes to Primary Anilines

Hong, W. P.; Iosub, A. V.; Stahl, S. S. J. Am. Chem. Soc. 2013, 135, 13664–13667.
DOI: 10.1021/ja4073172 | PDF icon Supporting Info, | File Supporting Info 2

Aerobic Dehydrogenation of Cyclohexanone to Phenol Catalyzed by Pd(TFA)2/2-Dimethylaminopyridine: Evidence for the Role of Pd-Nanoparticles

Pun, D.; Diao, T.; Stahl, S. S. J. Am. Chem. Soc. 2013, 135, 8213–8221.
DOI: 10.1021/ja403165u | PDF icon Supporting Info

Aerobic Dehydrogenation of Cyclohexanone to Cyclohexenone Catalyzed by Pd(DMSO)2(TFA)2: Evidence for Ligand-Controlled Chemoselectivity

Diao, T.; Pun, D.; Stahl, S. S. J. Am. Chem. Soc. 2013, 135, 8205–8212.
DOI: 10.1021/ja4031648 | PDF icon Supporting Info

Aerobic Oxidative Heck/Dehydrogenation Reactions of Cyclohexenones: Efficient Access to meta-Substituted Phenols

Izawa, Y.; Zheng, C.; Stahl, S. S. Angew. Chem. Int. Ed. 2013, 52, 3672-3675.
DOI: 10.1002/anie.201209457 | PDF icon Supporting Info

Characterization of DMSO Coordination to Palladium(II) in Solution and Insights into the Aerobic Oxidation Catalyst, Pd(DMSO)2(TFA)2.

Diao, T.; White, P.; Guzei, I.; Stahl, S. S. Inorg. Chem. 2012, 51, 11898-11909.
DOI: 10.1021/ic301799p | PDF icon Supporting Info (Experimental), | File Supporting Info (Xtal)

Catalyst-Controlled Regioselectivity in the Synthesis of Branched Conjugated Dienes via Aerobic Oxidative Heck Reactions.

Zheng, C.; Wang, D.; Stahl, S. S. J. Am. Chem. Soc. 2012, 134, 16496-16499.
DOI: 10.1021/ja307371w | PDF icon 12JACS Zhang SI.pdf

Direct Aerobic α,β-Dehydrogenation of Aldehydes and Ketones with a Pd(TFA)2/4,5-Diazafluorenone Catalyst.

Diao, T.; Wadzinski, T. J.; Stahl, S. S. Chem. Sci. 2012, 3, 887-891.
DOI: 10.1039/C1SC00724F | PDF icon Supporting Info

Synthesis of Cyclic Enones via Direct Palladium-Catalyzed Aerobic Dehydrogenation of Ketones.

Diao, T.; Stahl, S. S. J. Am. Chem. Soc. 2011, 133, 14566-14569.
DOI: 10.1021/ja206575j | PDF icon Supporting Info

Palladium-Catalyzed Aerobic Dehydrogenation of Substituted Cyclohexanones to Phenols.

Izawa, Y.; Pun, D.; Stahl, S. S. Science 2011, 333, 209-213.
DOI: 10.1126/science.1204183 | PDF icon Supporting Info

Aerobic Oxidative Coupling of o-Xylene: Discovery of 2-Fluoropyridine as a Ligand to Support Selective Pd-Catalyzed C-H Functionalization.

Izawa, Y.; Stahl, S. S. Adv. Synth. Catal. 2010, 352, 3223-3229.
DOI: 10.1002/adsc.201000771 | PDF icon Supporting Info

Allylic C-H Acetoxylation with a 4,5-Diazafluorenone-Ligated Palladium Catalyst: A Ligand-Based Strategy to Achieve Aerobic Catalytic Turnover.

Campbell, A. N.; White, P. B.; Guzei, I. A.; Stahl, S. S. J. Am. Chem. Soc. 2010, 132, 15116-15119.
DOI: 10.1021/ja105829t | PDF icon Supporting Info

Steric Modulation of Chiral Biaryl Diamines via Pd-Catalyzed Directed C−H Arylation.

Scarborough, C. C.; McDonald, R I.; Hartmann, C.; Sazama, G. T.; Bergant, A.; Stahl, S. S. J. Org. Chem. 2009, 74, 2613-2615.
DOI: 10.1021/jo802632v | PDF icon Supporting Info

Catalytic Aerobic Alcohol Oxidation

Aerobic Oxidation of Diverse Primary Alcohols to Carboxylic Acids with a Heterogeneous Pd-Bi-Te/C (PBT/C) Catalyst

Ahmed, M.S.; Mannel, D.S.; Root, T.W.; Stahl, S.S. Org. Process Res. Dev. 2017, Article ASAP.
DOI: 10.1021/acs.oprd.7b00223

Second-Order Biomimicry: In Situ Oxidative Self-Processing Converts Copper(I)/Diamine Precursor into a Highly Active Aerobic Oxidation Catalyst

McCann, S. D.; Lumb, J. -P.; Arndtsen, B. A.; Stahl, S. S. ACS Cent. Sci. 2017, 3, 314-321.
DOI: 10.1021/acscentsci.7b00022 | PDF icon Supporting Info.pdf

Discovery of Multicomponent Heterogeneous Catalysts via Admixture Screening: PdBiTe Catalysts for Aerobic Oxidative Esterification of Primary Alcohols

Mannel, D. S.; Ahmed, M. S.; Root, T. W.; Stahl, S. S. J. Am. Chem. Soc. 2017, 139, 1690-1698.
DOI: 10.1021/jacs.6b12722 | PDF icon Supporting Info.pdf

Mechanism of Copper/Azodicarboxylate-Catalyzed Aerobic Alcohol Oxidation: Evidence for Uncooperative Catalysis

McCann, S. D.; Stahl, S. S. J. Am. Chem. Soc. 2016, 138, 199-206.
DOI: 10.1021/jacs.5b09940 | PDF icon Supporting Info

Stable TEMPO and ABNO Catalyst Solutions for User-Friendly (bpy)Cu/Nitroxyl-Catalyzed Aerobic Alcohol Oxidation

Steves, J. E.; Stahl, S. S. J. Org. Chem. 2015, 80, 11184–11188.
DOI: 10.1021/acs.joc.5b01950 | PDF icon Supporting Info

Process Development of CuI/ABNO/NMI-Catalyzed Aerobic Alcohol Oxidation

Steves, J. E.; Preger, Y.; Martinelli, J. R.; Welch, C. J.; Root, T. W.; Hawkins, J. M.; Stahl, S. S. Org. Process Res. Dev. 2015, 19, 1548–1553.
DOI: 10.1021/acs.oprd.5b00179 | PDF icon Supporting Info

PTFE-Membrane Flow Reactor for Aerobic Oxidation Reactions and Its Application to Alcohol Oxidation

Greene, J. F.; Preger, Y.; Stahl, S. S.; Root, T. W. Org. Process Res. Dev. 2015, 19, 858–864.
DOI: 10.1021/acs.oprd.5b00125

Efficient and Selective Cu/Nitroxyl-Catalyzed Methods for Aerobic Oxidative Lactonization of Diols

Xie, X.; Stahl, S. S. J. Am. Chem. Soc. 2015, 137, 3767–3770.
DOI: 10.1021/jacs.5b01036 | PDF icon Supporting Info

Mechanism of Alcohol Oxidation Mediated by Copper(II) and Nitroxyl Radicals

Ryland, B. L.; McCann, S. D.; Brunold, T. C.; Stahl, S. S. J. Am. Chem. Soc. 2014, 136, 12166–12173.
DOI: 10.1021/ja5070137 | PDF icon Supporting Info

Practical Aerobic Oxidations of Alcohols and Amines with Homogeneous Copper/TEMPO and Related Catalyst Systems

Ryland, B. L.; Stahl, S. S. Angew. Chem. Int. Ed. 2014, 53, 8824-8838.
DOI: 10.1002/anie.201403110

Copper/TEMPO-Catalyzed Aerobic Alcohol Oxidation: Mechanistic Assessment of Different Catalyst Systems

Hoover, J. M.; Ryland, B. L; Stahl, S. S. ACS Catal. 2013, 3, 2599–2605.
DOI: 10.1021/cs400689a | PDF icon Supporting Info, | File CIF

Efficient Aerobic Oxidation of Secondary Alcohols at Ambient Temperature with an ABNO/NOx Catalyst System

Lauber, M. B.; Stahl, S. S. ACS Catal. 2013, 3, 2612–2616.
DOI: 10.1021/cs400746m | PDF icon Supporting Info

Copper(I)/ABNO-Catalyzed Aerobic Alcohol Oxidation: Alleviating Steric and Electronic Constraints of Cu/TEMPO Catalyst Systems

Steves, J. E.; Stahl, S. S. J. Am. Chem. Soc. 2013, 135, 15742-15745.
DOI: 10.1021/ja409241h | PDF icon Supporting Info

Continuous-Flow Aerobic Oxidation of Primary Alcohols with a Copper(I)/TEMPO Catalyst

Greene, J. F.; Hoover, J. M.; Mannel, D. S.; Root, T. W.; Stahl, S. S. Org. Process Res. Dev. 2013, 17, 1247-1251.
DOI: 10.1021/op400207f

Aerobic Oxidation of Diverse Primary Alcohols to Methyl Esters with a Readily Accessible Heterogeneous Pd/Bi/Te Catalyst

Powell, A. B.; Stahl, S. S. Org. Lett. 2013, 15, 5072-5075.
DOI: 10.1021/ol402428e | PDF icon Supporting Info

Air Oxidation of Primary Alcohols Catalyzed by Copper(I)/TEMPO. Preparation of 2-Amino-5-bromo-benzaldehyde

Hoover, J. M.; Stahl, S. S. Org. Synth. 2013, 90, 240-250.
| PDF icon PDF

Chemoselective Metal-Free Aerobic Alcohol Oxidation in Lignin

Rahimi, A.; Azarpira, A.; Kim, H.; Ralph, J.; Stahl, S. S. J. Am. Chem. Soc. 2013, 135, 6415–6418.
DOI: 10.1021/ja401793n | PDF icon Supporting Info

Mechanism of Copper(I)/TEMPO-Catalyzed Aerobic Alcohol Oxidation

Hoover, J. M.; Ryland, B. L.; Stahl, S. S. J. Am. Chem. Soc. 2013, 135, 2357-2367.
DOI: 10.1021/ja3117203 | PDF icon Supporting Info

Aerobic Alcohol Oxidation Using a Copper(I)/TEMPO Catalyst System: A Green, Catalytic Oxidation Reaction for the Undergraduate Organic Chemistry Laboratory.

Hill, N. J.; Hoover, J. M.; Stahl, S. S. J. Chem. Educ. 2013, 90, 102-105.
DOI: 10.1021/ed300368q | PDF icon Supporting Info, | PDF icon Supporting Info 2, | PDF icon Supporting Info 3

Copper(I)/TEMPO-catalyzed aerobic oxidation of primary alcohols to aldehydes with ambient air.

Hoover, J. M.; Steves, J. E.; Stahl, S. S. Nat. Protoc. 2012, 7, 1161-1167.
DOI: 10.1038/nprot.2012.057 | PDF icon Supporting Info, | PDF icon Supporting Info 2

Highly Practical Copper(I)/TEMPO Catalyst System for Chemoselective Aerobic Oxidation of Primary Alcohols.

Hoover, J. M.; Stahl, S. S. J. Am. Chem. Soc. 2011, 133, 16901-16910..
DOI: 10.1021/ja206230h | PDF icon Supporting Info

Development of safe and scalable continuous-flow methods for palladium-catalyzed aerobic oxidation reactions.

Ye, X.; Johnson, M. D.; Diao, T.; Yates, M. H.; Stahl, S. S. Green Chem. 2010, 12, 1180-1186.
DOI: 10.1039/C0GC00106F | PDF icon Supporting Info

Mechanism of Pd(OAc)2/DMSO-Catalyzed Aerobic Alcohol Oxidation: Mass-Transfer-Limitation Effects and Catalyst Decomposition Pathways.

Steinhoff, B. A.; Stahl, S. S. J. Am. Chem. Soc. 2006, 128, 4348-4355.
DOI: 10.1021/ja057914b | PDF icon Supporting Info

Unexpected Roles of Molecular Sieves in Palladium-Catalyzed Aerobic Oxidation Reactions.

Steinhoff, B. A.; King, A. E.; Stahl, S. S. J. Org. Chem. 2006, 71, 1861-1868.
DOI: 10.1021/jo052192s

Similarities Between the Reactions of Dioxygen and Alkenes with Palladium(0): Relevance to the Use of Benzoquinone and Molecular Oxygen as Stoichiometric Oxidants in Palladium-Catalyzed Oxidation Reactions.

Popp, B. V.; Thorman, J. L.; Stahl, S. S. J. Mol. Catal., A: Chem. 2006, 251, 2-7.
DOI: 10.1016/j.molcata.2006.02.019

Mechanistic Characterization of Aerobic Alcohol Oxidation Catalyzed by Pd(OAc)2 / Pyridine Including Identification of the Catalyst Resting State and the Origin of Non-Linear [Catalyst] Dependence.

Steinhoff, B. A.; Guzei, I. A.; Stahl S. S. J. Am. Chem. Soc. 2004, 126, 11268-11278.
DOI: 10.1021/ja049962m | PDF icon Supporting Info

Ligand-Modulated Palladium Oxidation Catalysis: Mechanistic Insights into Aerobic Alcohol Oxidation with the Pd(OAc)2 / Pyridine Catalyst System.

Steinhoff, B. A.; Stahl, S. S. Org. Lett. 2002, 4, 4179-4181.
DOI: 10.1021/ol026988e | PDF icon Supporting Info

Mechanistic Study of Alcohol Oxidation by the Pd(OAc)2/O2/DMSO Catalyst System and Implications for the Development of Improved Aerobic Oxidation Catalysts.

Steinhoff, B. A.; Fix, S. R.; Stahl, S. S. J. Am. Chem. Soc. 2002, 124, 766-767.
DOI: 10.1021/ja016806w | PDF icon Supporting Info

Fundamental Palladium-Dioxygen Reactivity

Detection of Palladium(I) in Aerobic Oxidation Catalysis

Jaworski, J. N.; McCann, S. D.; Guzei, I. A.; Stahl, S. S. Angew. Chem., Int. Ed. 2017, 56, 3605-3610.
DOI: 10.1002/anie.201700345 | PDF icon Supporting Info.pdf

Structurally Diverse Diazafluorene-Ligated Palladium(II) Complexes and Their Implications for Aerobic Oxidation Reactions

White, P. B.; Jaworski, J. N.; Fry, C. G.; Dolinar, B. S.; Guzei, I. A.; Stahl, S. S. J. Am. Chem. Soc. 2016, 138, 4869-4880.
DOI: 10.1021/jacs.6b01188 | PDF icon Supporting Info

O2-promoted allylic acetoxylation of alkenes: Assessment of “push” versus “pull” mechanisms and comparison between O2 and benzoquinone

Diao,T.; Stahl, S. S. Polyhedron 2014, 84, 96–102.
DOI: 10.1016/j.poly.2014.06.038

Reaction of O2 with [(-)-Sparteine]Pd(H)Cl: Evidence for an Intramolecular [H-L]+ "Reductive Elimination" Pathway.

Decharin, N.; Popp, B. V.; Stahl, S. S. J. Am. Chem. Soc. 2011, 133, 13268-13271.
DOI: 10.1021/ja204989p | PDF icon Supporting Info

Benzoquinone-Promoted Reaction of O2 with a PdII Hydride.

Decharin, N.; Stahl, S. S. J. Am. Chem. Soc. 2011, 133, 5732-5735.
DOI: 10.1021/ja200957n | PDF icon Supporting Info

O2 insertion into a palladium(II)-hydride bond: Observation of mechanistic crossover between HX-reductive-elimination and hydrogen-atom-abstraction pathways.

Konnick, M. M.; Decharin, N.; Popp, B. V.; Stahl, S. S. Chem. Sci. 2011, 2, 326-330.
DOI: 10.1039/C0SC00392A

Electronic Structural Comparison of the Reactions of Dioxygen and Alkenes with Nitrogen-Chelated Palladium(0).

Popp, B. V.; Morales, C. M.; Landis, C. R.; Stahl, S. S. Inorg. Chem. 2010, 49, 8200-8207.
DOI: 10.1021/ic100806w | PDF icon Supporting Info

Mechanism of Pd(OAc)2/Pyridine Catalyst Reoxidation by O2: Influence of Labile Monodentate Ligands and Identification of a Biomimetic Mechanism for O2 Activation.

Popp, B. V. ; Stahl, S. S. Chem. Eur. J. 2009, 15, 2915-2922.
DOI: 10.1002/chem.200802311 | PDF icon Supporting Info

Reaction of Molecular Oxygen with a PdII-Hydride To Produce a PdII-Hydroperoxide: Experimental Evidence for an HX-Reductive-Elimination Pathway.

Konnick, M. M.; Stahl, S. S. J. Am. Chem. Soc. 2008, 130, 5753-5762.
DOI: 10.1021/ja7112504 | PDF icon Supporting Info

Insertion of Molecular Oxygen into a Pd-Hydride Bond: Computational Evidence for Two Nearly Isoenergetic Pathways.

Popp, B. V.; Stahl, S. S. J. Am. Chem. Soc. 2007, 129, 4410-4422.
DOI: 10.1021/ja069037v | PDF icon Supporting Info

Reaction of Molecular Oxygen with an NHC-Coordinated Pd0 Complex: Computational Insights and Experimental Implications.

Popp, B. V.; Wendlandt, J. E.; Landis, C. R.; Stahl, S. S. Angew. Chem. Int. Ed. 2007, 46, 601-604.
DOI: 10.1002/anie.200603667

Reaction of Molecular Oxygen with a PdII-Hydride to Produce a PdII-Hydroperoxide: Acid Catalysis and Implications for Pd-Catalyzed Aerobic Oxidation Reactions.

Konnick, M. M.; Gandhi, B. A.; Guzei, I. A.; Stahl, S. S. Angew. Chem. Int. Ed. 2006, 45, 2904-2907.
DOI: 10.1002/anie.200600532

'Oxidatively-Induced' Reductive Elimination of Dioxygen from an η2-Peroxopalladium(II) Complex Promoted by Electron-Deficient Alkenes.

Popp, B. V.; Stahl, S. S. J. Am. Chem. Soc. 2006, 128, 2804-2805.
DOI: 10.1021/ja057753b | PDF icon Supporting Info

Insights into the Spin-Forbidden Reaction between L2Pd0 and Molecular Oxygen.

Landis, C. R.; Morales, C. M.; Stahl, S. S. J. Am. Chem. Soc. 2004, 126, 16302-16303.
DOI: 10.1021/ja044674b | PDF icon Supporting Info

"Inverse-Electron-Demand" Ligand Substitution: Experimental and Computational Insights into Olefin Exchange at Palladium(0).

Popp, B. V.; Thorman, J. L.; Morales, C. M.; Landis, C. R.; Stahl, S. S. J. Am. Chem. Soc. 2004, 126, 14832-14842.
DOI: 10.1021/ja0459734 | PDF icon Supporting Info

Characterization of Peroxo and Hydroperoxo Intermediates in the Aerobic Oxidation of N-Heterocyclic-Carbene-Coordinated Palladium(0).

Konnick, M. M.; Guzei, I. A.; and Stahl, S. S. J. Am. Chem. Soc. 2004, 126, 10212-10213.
DOI: 10.1021/ja046884u | PDF icon Supporting Info

'Inverse-Electron-Demand' Ligand Substitution in Palladium(0) Olefin Complexes.

Stahl, S. S.; Thorman, J. L.; de Silva, N.; Guzei, I. A.; Clark, R. W. J. Am. Chem. Soc. 2003, 125, 12-13.
DOI: 10.1021/ja028738z | PDF icon Supporting Info

The Wisconsin Schlenk Line: Incorporation of an Ergonomic Greaseless Three-Way Valve Design.

Drier, T. O.; Stahl, S. S. Fusion 2002, 3, 25-27.

Oxygenation of Nitrogen-Coordinated Palladium(0): Synthetic, Structural and Mechanistic Studies and Implications for Aerobic Oxidation Catalysis.

Stahl, S. S.; Thorman, J. L.; Nelson, R. C.; Kozee, M. A. J. Am. Chem. Soc. 2001, 123, 7188-7189.
DOI: 10.1021/ja015683c | PDF icon Supporting Info

Copper-Catalyzed Oxidative and Non-Oxidative Coupling

Feedstocks to Pharmacophores: Cu-Catalyzed Oxidative Arylation of Inexpensive Alkylarenes Enabling Direct Access to Diarylalkanes

Vasilopoulos, A.; Zultanski, S.L.; Stahl, S.S. J. Am. Chem. Soc. 2017, 139, 7705-7708.
DOI: 10.1021/jacs.7b03387 | PDF icon Supporting Info.pdf

Practical Synthesis of Amides via Copper/ABNO-Catalyzed Aerobic Oxidative Coupling of Alcohols and Amines

Zultanski, S. L.; Zhao, J.; Stahl, S. S. J. Am. Chem. Soc. 2016, 138, 6416–6419.
DOI: 10.1021/jacs.6b03931 | PDF icon Supporting Info

Cu-Catalyzed Aerobic Oxidative Three-Component Coupling Route to N-Sulfonyl Amidines via an Ynamine Intermediate

Kim, J.; Stahl, S. S. J. Org. Chem. 2015, 80, 2448–2454.
DOI: 10.1021/jo5029198 | PDF icon Supporting Info

Cu/Nitroxyl-Catalyzed Aerobic Oxidation of Primary Amines into Nitriles at Room Temperature

Kim, J.; Stahl, S.S. ACS Catal. 2013, 3, 1652-1656.
DOI: 10.1021/cs400360e | PDF icon Supporting Info

Divergence between Organometallic and Single-Electron Transfer Mechanisms in Copper(II)-Mediated Aerobic C–H Oxidation

Suess, A. M.; Ertem, M. Z.; Cramer, C. J.; Stahl, S. S. J. Am. Chem. Soc. 2013, 135, 9797–9804.
DOI: 10.1021/ja4026424 | PDF icon Supporting Info

Kinetic and Spectroscopic Studies of Aerobic Copper(II)-Catalyzed Methoxylation of Arylboronic Esters and Instights into Aryl Transmetalation to Copper(II).

King, A. E.; Ryland, B. L.; Brunold, T. C.; Stahl, S. S. Organometallics 2012, 31, 7948–7957.
DOI: 10.1021/om300586p | PDF icon Supporting Info

Copper(II)-mediated oxidative cyclization of enamides to oxazoles.

Wendlandt, A. E.; Stahl, S. S. Org. Biomol. Chem. 2012, 10, 3866-3870.
DOI: 10.1039/C2OB25310K

Observation and Mechanistic Study of Facile C-O Bond Formation Between a Well-Defined Aryl-Copper(III) Complex and Oxygen Nucleophiles.

Huffman, L. M.; Casitas, A.; Font, M.; Canta, M.; Costas, M.; Ribas, X.; Stahl, S. S. Chem. Eur. J. 2011, 17, 10643-10650.
DOI: 10.1002/chem.201100608 | PDF icon Supporting Info

Mechanistic analysis of trans C-N reductive elimination from a square-planar macrocyclic aryl-copper(III) complex.

Huffman, L. M.; Stahl, S. S. Dalton Trans. 2011, 40, 8959-8963.
DOI: 10.1039/C1DT10463B | PDF icon Supporting Info

Molecular mechansim of acid-triggered aryl-halide reductive elimination in well-defined aryl-CuIII-halide species.

Casitas, A.; Poater, A.; Sola, M.; Stahl, S. S.; Costas, M.; Ribas, X. Dalton Trans. 2010, 39, 10458-10463.
DOI: 10.1039/C0DT00284D | PDF icon Supporting Info

Copper-Catalyzed Aerobic Oxidative Functionalization of an Arene C-H Bond: Evidence for an Aryl-Copper(III) Intermediate.

King, A. E.; Huffman, L. M.; Casitas, A.; Costas, M.; Ribas, X.; Stahl, S. S. J. Am. Chem. Soc. 2010, 132, 12068-12073.
DOI: 10.1021/ja1045378 | PDF icon Supporting Info

Direct observation of CuI/CuIII redox steps relevant to Ullmann-type coupling reactions.

Casitas, A.; King, A. E.; Parella, T.; Costas, M.; Stahl, S. S.; Ribas, X. Chem. Sci. 2010, 1, 326-330.
DOI: 10.1039/C0SC00245C | PDF icon Supporting Info

Regioselective Copper-Catalyzed Chlorination and Bromination of Arenes with O2 as the Oxidant.

Yang, L.; Lu, Z.; Stahl, S. S. Chem. Commun. 2009, 6460-6462.
DOI: 10.1039/B915487F | PDF icon Supporting Info

Mechanistic Study of Copper-Catalyzed Aerobic Oxidative Coupling of Arylboronic Esters and Methanol: Insights into an Organometallic Oxidase Reaction.

King, A. E.; Brunold, T. C.; Stahl, S. S. J. Am. Chem. Soc. 2009, 131, 5044-5045.
DOI: 10.1021/ja9006657 | PDF icon Supporting Info

Mechanistic Study of Asymmetric Oxidative Biaryl Coupling: Evidence for Self-Processing of the Copper Catalyst to Achieve Control of Oxidase vs Oxygenase Activity.

Hewgley, J. B.; Stahl, S. S.; Kozlowski, M. C. J. Am. Chem. Soc. 2008, 130, 12232-12233.
DOI: 10.1021/ja804570b | PDF icon Supporting Info

Carbon-Nitrogen Bond Formation Involving Well-Defined Aryl-CopperIII Complexes.

Huffman, L. M.; Stahl, S. S. J. Am. Chem. Soc. 2008, 130, 9196-9197.
DOI: 10.1021/ja802123p | PDF icon Supporting Info

Copper-Catalyzed Aerobic Oxidative Amidation of Terminal Alkynes: Efficient Synthesis of Ynamides

Hamada, T.; Ye, X.; Stahl, S. S. J. Am. Chem. Soc. 2008, 130, 833-835.
DOI: 10.1021/ja077406x | PDF icon Supporting Info (Experimental), | PDF icon Supporting Info (NMR)

Water Oxidation and Electrocatalysis

Characterization of NiFe oxyhydroxide electrocatalysts by integrated electronic structure calculations and spectroelectrochemistry

Goldsmith, Z. K.; Harshan, A. K.; Gerken, J. B.; Vörös, M.; Galli, G.; Stahl, S. S.; Hammes-Schiffer, S. Proc. Natl. Acad. Sci. U.S.A. 2017, 114, 3050-3055.
DOI: 10.1073/pnas.1702081114 | PDF icon Supporting Info.pdf

Cooperative electrocatalytic alcohol oxidation with electron-proton-transfer mediators

Badalyan, A.; Stahl, S. S. Nature 2016, 535, 406–410.
DOI: 10.1038/nature18008 | PDF icon Supporting Info

Discovering Inexpensive, Effective Catalysts for Solar Energy Conversion: An Authentic Research Laboratory Experience

Shaner, S. E.; Hooker, P. D.; Nickel, A.-M.; Leichtfuss, A. R.; Adams, C. S.; de la Cerda, D.; She, Y.; Gerken, J. B.; Pokhrel, R.; Ambrose, N. J.; Khaliqi, D.; Stahl, S. S.; Schuttlefield Christus, J. D. J. Chem. Ed. 2016, 93, 650-657.
DOI: 10.1021/acs.jchemed.5b00591 | PDF icon Supporting Info

Operando Analysis of NiFe and Fe Oxyhydroxide Electrocatalysts for Water Oxidation: Detection of Fe4+ by Mössbauer Spectroscopy

Chen, J. Y. C.; Dang, L.; Liang, H.; Bi, W.; Gerken, J. B.; Jin, S.; Alp, E. E.; Stahl, S. S. J. Am. Chem. Soc. 2015, 137, 15090-15093.
DOI: 10.1021/jacs.5b10699 | PDF icon Supporting Info

High-Potential Electrocatalytic O2 Reduction with Nitroxyl/NOx Mediators: Implications for Fuel Cells and Aerobic Oxidation Catalysis

Gerken, J. B.; Stahl, S. S. ACS Cent. Sci. 2015, 1, 234-243.
DOI: 10.1021/acscentsci.5b00163 | PDF icon Supporting Info

A survey of diverse earth abundant oxygen evolution electrocatalysts showing enhanced activity from Ni-Fe oxides containing a third metal

Gerken, J. B.; Shaner, S. E.; Massé, R. C.; Porubsky, N. J.; Stahl, S. S. Energy Environ. Sci. 2014, 7, 2376-2382.
DOI: 10.1039/C4EE00436A | PDF icon Supporting Info

Inverse Spinel NiFeAlO4 as a Highly Active Oxygen Evolution Electrocatalyst: Promotion of Activity by a Redox-Inert Metal Ion

Chen, J. Y. C.; Miller, J. T.; Gerken, J. B.; Stahl, S. S. Energy Environ. Sci. 2014, 7, 1382-1386.
DOI: 10.1039/C3EE43811B

Modular Synthesis of Alkyne-Substituted Ruthenium Polypyridyl Complexes Suitable for “Click” Coupling

Gerken, J. B.; Rigsby, M. L.; Ruther, R. E.; Perez-Rodriguez, R. J.; Guzei, I. A., Hamers, R. J.; Stahl, S. S. Inorg. Chem. 2013, 52, 2796–2798.
DOI: 10.1021/ic302827s | PDF icon Supporting Info, | File Supporting Info 2

Cobalt analogs of Ru-based water oxidation catalysts: Overcoming thermodynamic instability and kinetic lability to achieve electrocatalytic O2 evolution.

Rigsby, M. L.; Mandal, S.; Nam, W.; Spencer, L. C.; Llobet, A.; Stahl, S. S. Chem. Sci. 2012, 3, 3058-3062.
DOI: 10.1039/C2SC20755A | PDF icon Supporting Info

Development of O2-Sensitive Fluorescence-Quenching Assay for the Combinatorial Discovery of Electrocatalysts for Water Oxidation.

Gerken, J. B.; Chen, J. Y. C.; Massé, R. C.; Powell, A. B.; Stahl, S. S. Angew. Chem. Int. Ed. 2012, 51, 6676-6680.
DOI: 10.1002/anie.201201999 | PDF icon Supporting Info

Electrochemical Water Oxidation with Cobalt-Based Electrocatalysts from pH 0-14: The Thermodynamic Basis for Catalyst Structure, Stability, and Activity.

Gerken, J. B.; McAlpin, J. G.; Chen, J. Y. C.; Rigsby, M. L.; Casey, W. H.; Britt, R. D.; Stahl, S. S. J. Am. Chem. Soc. 2011, 133, 14431-14442.
DOI: 10.1021/ja205647m | PDF icon Supporting Info

Modular "Click" Chemistry for Electrochemically and Photoelectrochemically Active Molecular Interfaces to Tin Oxide Surfaces.

Benson, M. C.; Ruther, R. E.; Gerken, J. B.; Rigsby, M. L.; Bishop, L. M.; Tan, Y.; Stahl, S. S.; Hamers, R. J. ACS Appl. Mater. Interfaces 2011, 3, 3110-3119.
DOI: 10.1021/am200615r | PDF icon Supporting Info

Highly Stable Redox-Active Molecular Layers by Covalent Grafting to Conductive Diamond.

Ruther, R. E.; Rigsby, M. L.; Gerken, J. B.; Hogendoorn, S. R.; Landis, E. C.; Stahl, S. S.; Hamers, R. J. J. Am. Chem. Soc. 2011, 133, 5692-5694.
DOI: 10.1021/ja200210t | PDF icon Supporting Info

Fluoride-Modulated Cobalt Catalysts for Electrochemical Oxidation of Water under Non-Alkaline Conditions.

Gerken, J. B.; Landis, E. C.; Hamers, R. J.; Stahl, S. S. ChemSusChem 2010, 3, 1176-1179.
DOI: 10.1002/cssc.201000161 | PDF icon Supporting Info

Amide Exchange Catalysis and Polyamide Synthesis

Ammonolysis of anilides promoted by ethylene glycol and phosphoric acid

Stephenson, N. A.; Gellman, S. H.; Stahl, S. S. RSC Adv. 2014, 4, 46840-46843.
DOI: 10.1039/C4RA09065A | PDF icon Supporting Info

Functionally Diverse Nylon-3 Copolymers from Readily Accessible β-Lactams.

Zhang, J.; Markiewicz, M. J.; Weisblum, B.; Stahl, S. S.; Gellman, S. H. ACS Macro Lett. 2012, 1, 714-717.
DOI: 10.1021/mz300172y | PDF icon Supporting Info

C-Terminal Functionalization of Nylon-3 Polymers: Effects of C-Terminal Groups on Antibacterial and Hemolytic Activities.

Zhang, Z.; Markiewicz, M. J.; Mowery, B. P.; Weisblum, B.; Stahl, S. S.; Gellman, S. H. Biomacromolecules 2012, 13, 323-331.
DOI: 10.1021/bm2013058 | PDF icon Supporting Info (Experimental), | PDF icon Supporting Info (MS)

Kinetics of Anionic Ring-Opening Polymerization of Variously Substituted β-Lactams: Homopolymerization and Copolymerization.

Zhang, J.; Gellman, S. H.; Stahl, S. S. Macromolecules 2010, 43, 5618-5626.
DOI: 10.1021/ma1010809 | PDF icon Supporting Info

Biophysical Mimicry of Lung Surfactant Protein B by Random Nylon-3 Copolymers

Dohm, M. T.; Mowery, B. P.; Czyzewski, A. M.; Stahl, S. S.; Gellman, S. H.; Barron, A. E. J. Am. Chem. Soc. 2010, 132, 7957-7967.
DOI: 10.1021/ja909734n | PDF icon Supporting Info

Nylon-3 Copolymers that Generate Cell-Adhesive Surfaces Identified by Library Screening.

Lee, M.-R.; Stahl, S. S.; Gellman, S. H.; Masters, K. S. J. Am. Chem. Soc. 2009, 131, 16779-16789.
DOI: 10.1021/ja9050636 | PDF icon Supporting Info

Catalytic Transamidation Reactions Compatible with Tertiary Amide Metathesis under Ambient Conditions.

Stephenson, N. S.; Zhu, J.; Gellman, S. H.; Stahl, S. S. J. Am. Chem. Soc. 2009, 131, 10003-10008.
DOI: 10.1021/ja8094262

Structure-activity Relationships among Random Nylon-3 Copolymers that Mimic Antibacterial Host-Defense Peptides.

Mowery, B. P.; Lindner, A. H.; Weisblum, B.;Stahl, S. S.; Gellman, S. H. J. Am. Chem. Soc. 2009, 131, 9735-9745.
DOI: 10.1021/ja901613g | PDF icon Supporting Info

Access to Poly-β-Peptides with Functionalized Side Chains and End Groups via Controlled Ring-Opening Polymerization of β-Lactams.

Zhang, J.;Kissounko, D. A.; Lee, S. E.; Gellman, S. H.; Stahl, S. S. J. Am. Chem. Soc. 2009, 131, 1589-1597.
DOI: 10.1021/ja8069192 | PDF icon Supporting Info

Synthesis of β-Lactams Bearing Functionalized Side Chains from a Readily Available Precursor.

Lee, M.; Stahl, S. S.; Gellman, S. H. Org. Lett. 2008, 10, 5317-5319.
DOI: 10.1021/ol802274x | PDF icon Supporting Info

Dual Mechanism of Bacterial Lethality for a Cationic Sequence-Random Copolymer that Mimics Host-Defense Antimicrobial Peptides.

Epand, R. F.; Mowery, B. P.; Lee, S. E.; Stahl, S. S.; Lehrer, R. I.; Gellman, S. H.; Epand, R. M. J. Mol. Biol. 2008, 279, 38-50.
DOI: 10.1016/j.jmb.2008.03.047

Discovery and Mechanistic Study of AlIII-Catalyzed Transamidation of Tertiary Amides.

Hoerter, J. M.; Otte, K. M.; Gellman, S. H.; Cui, Q.; Stahl, S. S. J. Am. Chem. Soc. 2008, 130, 647-654.
DOI: 10.1021/ja0762994 | PDF icon Supporting Info

Mimicry of Antimicrobial Host-Defense Peptides by Random Copolymers.

Mowery, B. P.; Lee, S. E.; Kissounko, D. A.; Epand, R. F.; Epand, R. M.; Weisblum, B.; Stahl, S. S.; Gellman, S. H. J. Am. Chem. Soc. 2007, 129, 15474-15476.
DOI: 10.1021/ja077288d | PDF icon Supporting Info

Catalytic Metathesis of Simple Secondary Amides.

Bell, C. Kissounko, D. A.; Gellman, S. H.; Stahl, S. S. Angew. Chem. Int. Ed. 2007, 46, 761-763.
DOI: 10.1002/anie.200603588

TiIV - Mediated Reactions between Primary Amines and Secondary Carboxamides: Amidine Formation Versus Transamidation.

Kissounko, D. A.; Hoerter, J. M.; Guzei, I. A.; Cui, Q.; Gellman, S. H.; Stahl, S. S. J. Am. Chem. Soc. 2007, 129, 1776-1783.
DOI: 10.1021/ja0650293 | PDF icon Supporting Info

Mechanism of AluminumIII-Catalyzed Transamidation of Unactivated Secondary Carboxamides.

Hoerter, J. M.; Otte, K. M.; Gellman, S. H.; Stahl, S. S. J. Am. Chem. Soc. 2006, 128, 5177.
DOI: 10.1021/ja060331x | PDF icon Supporting Info

Titanium(IV)-Mediated Conversion of Carboxamides to Amidines and Implications for Catalytic Transamidation.

Kissounko, D. A.; Guzei, I. A.; Gellman, S. H.; Stahl, S. S. Organometallics 2005, 24, 5208-5210.
DOI: 10.1021/om050768y | PDF icon Supporting Info

Effects of Side Chain Configuration and Backbone Spacing on the Gene Delivery Properties of Lysine-Derived Cationic Polymers.

Eldred, S. E.; Pancost, M. R.; Otte, K. M.; Rozema, D.; Stahl, S. S.; Gellman, S. H. Bioconjugate Chem. 2005, 16, 694-699.
DOI: 10.1021/bc050017c

Catalytic Transamidation under Moderate Conditions.

Eldred, S. E.; Stone, D. A.; Gellman, S. H.; Stahl, S. S. J. Am. Chem. Soc. 2003, 125, 3422-3423.
DOI: 10.1021/ja028242h