Catalytic Oxidations with Molecular Oxygen
Heterogeneous Catalytic Aerobic Oxidation
- Developing new heterogeneous catalysts for organic chemical synthesis
- Synthesizing and characterizing M-N-C, single-atom catalysts for chemical synthesis applications
- Characterizing the mechanism of liquid-phase heterogeneous aerobic oxidation catalysts
This is an accordion element with a series of buttons that open and close related content panels.
Key References
Review Articles:
Bates, J. S.; Johnson, M. R.; Khamespanah, F.; Root, T. W.; Stahl, S. S. Heterogeneous M-N-C Catalysts for Aerobic Oxidation Reactions: Lessons from Oxygen Reduction Electrocatalysts. Chem. Rev. 2022, Accepted Article. DOI: 10.1021/acs.chemrev.2c00424
Representative Publications:
Iosub, A. V.; Stahl, S. S. Catalytic Aerobic Dehydrogenation of Nitrogen Heterocycles Using Heterogeneous Cobalt Oxide Supported on Nitrogen-Doped Carbon. Org. Lett. 2015, 17, 4404-4407. DOI:10.1021/acs.orglett.5b01790
Mannel, D. S.; Ahmed, M. S.; Root, T. W.; Stahl, S. S. Discovery of Multicomponent Heterogeneous Catalysts via Admixture Screening: PdBiTe Catalysts for Aerobic Oxidative Esterification of Primary Alcohols. J. Am. Chem. Soc. 2017, 139, 1690-1698. DOI:10.1021/jacs.6b12722
Ahmed, M. S.; Mannel, D. S.; Root, T. W.; Stahl, S. S. Aerobic Oxidation of Diverse Primary Alcohols to Carboxylic Acids with a Heterogeneous Pd-Bi-Te/C (PBT/C) Catalyst. Org. Process Res. Dev. 2017, 21, 1388-1393. DOI:10.1021/acs.oprd.7b00223
Mannel, D. S.; King, J.; Preger, Y.; Ahmed, M. S.; Root, T. W.; Stahl, S. S. Mechanistic Insights into Aerobic Oxidative Methyl Esterification of Primary Alcohols with Heterogeneous PdBiTe Catalysts. ACS Catal. 2018, 8, 1038-1047. DOI:10.1021/acscatal.7b02886
Bates, J. S.; Biswas, S.; Suh, S.-E.; Johnson, M. R.; Mondal, B.; Root, T. W.; Stahl, S. S. Chemical and Electrochemical O2 Reduction on Earth-Abundant M-N-C Catalysts and Implications for Mediated Electrolysis. J. Am. Chem. Soc. 2022, 144, 922-927. DOI: 10.1021/jacs.1c11126.
Organic (Co)Catalysts for Aerobic Oxidation
- Developing Cu/aminoxyl catalysts for selective aerobic alcohol oxidation
- Establishing mechanisms of redox cooperativity between redox-active organic co-catalysts (aminoxyls, quinones) with transition metals (Cu, Co)
- Developing biomimetic quinones as catalysts for selective aerobic oxidation and oxidative coupling of amines
This is an accordion element with a series of buttons that open and close related content panels.
Key References
Review Articles:
Ryland, B. L.; Stahl, S. S. Practical Aerobic Oxidations of Alcohols and Amines with Homogeneous Copper/TEMPO and Related Catalyst Systems. Angew. Chem. Int. Ed. 2014, 53, 8824-8838. DOI:10.1002/anie.201403110
Representative Publications:
Hoover, J. M.; Stahl, S. S. Highly Practical Copper(I)/TEMPO Catalyst System for Chemoselective Aerobic Oxidation of Primary Alcohols. J. Am. Chem. Soc. 2011, 133, 16901-16910. DOI:10.1021/ja206230h
Steves, J. E.; Stahl, S. S. Copper(I)/ABNO-Catalyzed Aerobic Alcohol Oxidation: Alleviating Steric and Electronic Constraints of Cu/TEMPO Catalyst Systems. J. Am. Chem. Soc. 2013, 135, 15742-15745. DOI:10.1021/ja409241h
Hoover, J. M.; Ryland, B. L.; Stahl, S. S. Mechanism of Copper(I)/TEMPO-Catalyzed Aerobic Alcohol Oxidation. J. Am. Chem. Soc. 2013, 135, 2357-2367. DOI:10.1021/ja3117203
Ryland, B. L.; McCann, S. D.; Brunold, T. C.; Stahl, S. S. Mechanism of Alcohol Oxidation Mediated by Copper(II) and Nitroxyl Radicals. J. Am. Chem. Soc. 2014, 136, 12166–12173. DOI:10.1021/ja5070137
Piszel, P. E.; Vasilopoulos, A.; Stahl, S. S. Oxidative Amide Coupling from Functionally Diverse Alcohols and Amines using Aerobic Copper/Nitroxyl Catalysis. Angew. Chem. Int. Ed. 2019, 131, 12211-12215. DOI: 10.1002/anie.20190613
Nutting, J. E.; Mao, K.; Stahl, S. S. Iron(III) Nitrate/TEMPO-Catalyzed Aerobic Alcohol Oxidation: Distinguishing between Serial versus Integrated Redox Cooperativity. J. Am. Chem. Soc. 2021, 143, 10565-10570. DOI: 10.1021/jacs.1c05224
Copper Catalyzed Aerobic Oxidation
- How do catalysts that undergo one-electron redox chemistry mediate two-electron oxidation reactions with a four-electron oxidant (O2)?
- Establishing principles to distinguish between single-electron-transfer (SET) and organometallic oxidation pathways, including the demonstration of organocopper(III) intermediates
- Developing and characterizing oxidative N–N coupling reactions
This is an accordion element with a series of buttons that open and close related content panels.
Key References
Review Articles:
Wendlandt, A. E.; Suess, A. M.; Stahl, S. S. Copper-Catalyzed Aerobic Oxidative C-H Functionalizations: Trends and Mechanistic Insights. Angew. Chem. Int. Ed. 2011, 50, 11062-11087. DOI:10.1002/anie.201103945
McCann, S. D.; Stahl, S. S. Copper-Catalyzed Aerobic Oxidations of Organic Molecules: Pathways for Two-Electron Oxidation with a Four-Electron Oxidant and a One-Electron Redox-Active Catalyst. Acc. Chem. Res. 2015, 48, 1756–1766. DOI:10.1021/acs.accounts.5b00060
Representative Publications:
McCann, S. D.; Lumb, J.-P.; Arndtsen, B. A.; Stahl, S. S. Second-Order Biomimicry: In Situ Oxidative Self-Processing Converts Copper(I)/Diamine Precursor into a Highly Active Aerobic Oxidation Catalyst. ACS Cent. Sci. 2017, 3, 314-321. DOI:10.1021/acscentsci.7b00022
Ryan, M. C.; Martinelli, J. R.; Stahl, S. S. Cu-Catalyzed Aerobic Oxidative N–N Coupling of Carbazoles and Diarylamines Including Selective Cross-Coupling. J. Am. Chem. Soc. 2018, 140, 9074-9077. DOI:10.1021/jacs.8b05245
Wang, F.; Gerken, J. B.; Bates, D. M.; Kim, Y. J.; Stahl, S. S. Electrochemical Strategy for Hydrazine Synthesis: Development and Overpotential Analysis of Methods for Oxidative N–N Coupling of an Ammonia Surrogate. J. Am. Chem. Soc. 2020, 142, 12349–12356. DOI: 10.1021/jacs.0c04626
Liu, W.; Twilton, J.; Wei, B.; Lee, M.; Hopkins, M. N.; Bacsa, J.; Stahl, S. S.; Davies, H. M. L. Copper-Catalyzed Oxidation of Hydrazones to Diazo Compounds Using Oxygen as the Terminal Oxidant. ACS Catal. 2021, 11, 2676-2683. DOI: 10.1021/acscatal.1c00264
Palladium Catalyzed Aerobic Oxidation
- Developing catalytic aerobic oxidation methods, including reactions of alcohols, alkenes, and aliphatic and aromatic C–H bonds
- Mechanistic understanding of catalytic mechanisms, elucidating the basis for ligand-promoted catalytic turnover with O2 as the oxidant
- Characterizing fundamental Pd-O2 reactivity, including structural characterization of Pd-peroxo and hydroperoxo complexes
This is an accordion element with a series of buttons that open and close related content panels.
Key References
Review Articles:
Campbell, A. N.; Stahl, S. S. Overcoming the “Oxidant Problem”: Strategies to Use O2 as the Oxidant in Organometallic C-H Oxidation Reactions Catalyzed by Pd (and Cu). Acc. Chem. Res. 2012, 45, 851-863. DOI:10.1021/ar2002045
Wang, D.; Weinstein, A. B.; White, P. B.; Stahl, S. S. Ligand-Promoted Palladium-Catalyzed Aerobic Oxidation Reactions. Chem. Rev. 2018, 118, 2636-2679. DOI:10.1021/acs.chemrev.7b00334
Representative Publications:
Izawa, Y.; Pun, D.; Stahl, S. S. Palladium-Catalyzed Aerobic Dehydrogenation of Substituted Cyclohexanones to Phenols. Science 2011, 333, 209-213. DOI:10.1126/science.1204183
Jaworski, J. N.; Kozack, C. V.; Tereniak, S. J.; Knapp, S. M. M.; Landis, C. R.; Miller, J. T.; Stahl, S. S. Operando Spectroscopic and Kinetic Characterization of Aerobic Allylic C–H Acetoxylation Catalyzed by Pd(OAc)2/4,5-Diazafluoren-9-one. J. Am. Chem. Soc. 2019, 141, 10462-10474. DOI:10.1021/jacs.9b04699
Bruns, D. L.; Musaev, D. G.; Stahl, S. S. Can Donor Ligands Make Pd(OAc)2 a Stronger Oxidant? Access to Elusive Palladium(II) Reduction Potentials and Effects of Ancillary Ligands via Palladium(II)/Hydroquinone Redox Equilibria. J. Am. Chem. Soc. 2020, 142, 19678–19688. DOI: 10.1021/jacs.0c09464
Salazar, C. A.; Flesch, K. N.; Haines, B. E.; Zhou, P. S.; Musaev, D. G.; Stahl, S. S. Tailored Quinones Support High-Turnover Pd Catalysts for Oxidative C–H Arylation with O2. Science 2020, 370, 1454–1460. DOI: 10.1126/science.abd1085
Catalytic Radical C‒H Oxidation and Cross-Coupling
- Developing new methods for chemo-, regio-, and stereoselective functionalization of C(sp3)‒H bonds
- Utilizing radical-relay strategies to achieve benzylic C(sp3)‒H functionalization and cross-coupling
- Controlling the selectivity of radical and non-radical C‒H oxidation methods for medicinal chemistry
This is an accordion element with a series of buttons that open and close related content panels.
Key References
Review Articles:
Golden, D. L.; Suh, S.-E.; Stahl, S. S. Radical C(sp3)–H Functionalization and Cross-Coupling Reactions. Nat. Rev. Chem. 2022, 6, 405-427. DOI: 10.1038/s41570-022-00388-4
Representative Publications:
Zhang, W.; Wang, F.; McCann, S. C.; Wang, D.; Chen, P.; Stahl, S. S.; Liu, G. Enantioselective Cyanation of Benzylic C-H Bonds via Copper-Catalyzed Radical Relay. Science 2016, 353, 1014-10158. DOI:10.1126/science.aaf7783
Vasilopoulos, A.; Zultanski, S. L.; Stahl, S. S. Feedstocks to Pharmacophores: Cu-Catalyzed Oxidative Arylation of Inexpensive Alkylarenes Enabling Direct Access to Diarylalkanes. J. Am. Chem. Soc. 2017, 139, 7705-7708. DOI:10.1021/jacs.7b03387
Hu, H.; Chen, S. J.; Mandal, M.; Pratik, S. M.; Buss, J. A.; Krska, S. W.; Cramer, C. J.; Stahl, S. S. Copper-Catalyzed Benzylic C-H Coupling with Alcohols via Radical Relay Enabled by Redox Buffering. Nat. Catal. 2020, 3, 358-367. DOI:10.1038/s41929-020-0425-1
Suh, S.-E.; Chen, S.-J.; Mandal, M.; Guzei, I. A.; Cramer, C. J.; Stahl, S. S. Site-Selective Copper-Catalyzed Azidation of Benzylic C–H Bonds. J. Am. Chem. Soc. 2020, 142, 11388–11393. DOI: 10.1021/jacs.0c05362
Chen, S.-J.; Golden, D. L.; Krska, S. W.; Stahl, S. S. Copper-Catalyzed Cross-Coupling of Benzylic C–H Bonds and Azoles with Controlled N-Site Selectivity. J. Am. Chem. Soc. 2021, 143, 14438-14444. DOI: 10.1021/jacs.1c07117
Suh, S.-E.; Nkulu, L. E.; Lin, S.; Krska, S. W.; Stahl, S. S. Benzylic C–H Isocyanation/Amine Coupling Sequence Enabling High-Throughput Synthesis of Pharmaceutically Relevant Ureas. Chem. Sci. 2021, 12, 10380-10387. DOI: 10.1039/D1SC02049H
Vasilopoulos, A.; Krska, S. W.; Stahl, S. S. C(sp3)–H Methylation Enabled by Peroxide Photosensitization and Ni-Mediated Radical Coupling. Science 2021, 372, 398-403. DOI: 10.1126/science.abh2623
Catalytic Methods for Biomass Conversion and Valorization
- Using a two-step oxidation/depolymerization sequence for conversion of lignin into aromatic monomers
- Demonstrating selective aerobic and electrochemical oxidation methods for oxidative deconstruction of lignin and illustrating how this reactivity contributes to acid-promoted cleavage of the lignin polymer
- Developing oxidative catalytic fractionation methods for direct convertion of biomass into high-quality sugar and aromatic streams
This is an accordion element with a series of buttons that open and close related content panels.
Key References
Review Articles:
Cui, Y.; Goes, S. L.; Stahl, S. S. Sequential Oxidation-Depolymerization Strategies for Lignin Conversion to Low Molecular Weight Aromatic Chemicals. Adv. Inorg. Chem. 2021, 77, 99-136. DOI: 10.1016/bs.adioch.2021.02.003
Representative Publications:
Rahimi, A.; Azarpira, A.; Kim, H.; Ralph, J.; Stahl, S. S. Chemoselective Metal-Free Aerobic Alcohol Oxidation in Lignin. J. Am. Chem. Soc. 2013, 135, 6415–6418. DOI:10.1021/ja401793n
Rahimi, A.; Ulbrich, A.; Coon, J. J.; Stahl S. S. Formic-acid-induced depolymerization of oxidized lignin to aromatics. Nature 2014, 515, 249–252. DOI:10.1038/nature13867
Rafiee, M.; Alherech, M.; Karlen, S. D.; Stahl, S. S. Electrochemical Aminoxyl-Mediated Oxidation of Primary Alcohols in Lignin to Carboxylic Acids: Polymer Modification and Depolymerization. J. Am. Chem. Soc. 2019, 141, 15266-15276. DOI:10.1021/jacs.9b07243
Luo, H.; Weeda, E. P.; Alherech, M.; Anson, C. W.; Karlen, S. D.; Cui, Y.; Foster, C. E.; Stahl, S. S. Oxidative Catalytic Fractionation of Lignocellulosic Biomass under Non-alkaline Conditions. J. Am. Chem. Soc. 2021, 143, 15462-15470. DOI: 10.1021/jacs.1c08635
Alherech, M.; Omolabake, S.; Holland, C. M.; Klinger, G. E.; Hegg, E. L.; Stahl, S. S. From Lignin to Valuable Aromatic Chemicals: Lignin Depolymerization and Monomer Separation via Centrifugal Partition Chromatography. ACS Cent. Sci. 2021, 7, 1831-1837. DOI: 10.1021/acscentsci.1c00729
Electrocatalysis and Electrochemical Organic Synthesis
- Using electron-proton-transfer mediators to lower overpotential in electrochemical oxidations and to expand their scope and utility for pharmaceutical synthesis
- Developing HAT and hydride-transfer mediators to enable electrochemical C‒H functionalization
- Utilizing scalable flow processes for suitable electrochemical synthesis
This is an accordion element with a series of buttons that open and close related content panels.
Key References
Review Articles:
Nutting, J. E.; Rafiee, M.; Stahl, S. S. Tetramethylpiperidine N-Oxyl (TEMPO), Phthalimide N-Oxyl (PINO), and Related N-Oxyl Species: Electrochemical Properties and Their Use in Electrocatalytic Reactions. Chem. Rev. 2018, 118, 4834-4885. DOI:10.1021/acs.chemrev.7b00763
Wang, F.; Stahl, S. S. Electrochemical Oxidation of Organic Molecules at Lower Overpotential: Accessing Broader Functional Group Compatibility with Electron-Proton Transfer Mediators. Acc. Chem. Res. 2020, 53, 561-574. DOI: 10.1021/acs.accounts.9b00544
Nutting, J. E.; Gerken, J. B.; Stamoulis, A. G.; Bruns, D. L.; Stahl, S. S. “How Should I Think about Voltage? What is Overpotential?”: Establishing an Organic Chemistry Intuition for Electrochemistry. J. Org. Chem. 2021, 86, 15875-15885. DOI: 10.1021/acs.joc.1c01520
Representative Publications:
Badalyan, A.; Stahl, S. S. Cooperative electrocatalytic alcohol oxidation with electron-proton-transfer mediators. Nature 2016, 535, 406–410. DOI:10.1038/nature18008
Wang, F.; Rafiee, M.; Stahl, S. S. Electrochemical Functional-Group-Tolerant Shono-Type Oxidation of Cyclic Carbamates Enabled by Aminoxyl Mediators. Angew. Chem. Int. Ed. 2018, 57, 6686-6690. DOI:10.1002/anie.201803539
Rafiee, M.; Wang, F.; Hruszkewycz, D. P.; Stahl, S. S. N-Hydroxyphthalimide-Mediated Electrochemical Iodination of Methylarenes and Comparison to Electron-Transfer-Initiated C–H Functionalization. J. Am. Chem. Soc. 2018, 140, 22-25. DOI:10.1021/jacs.7b09744
Lennox, A. J. J.; Goes, S. L.; Webster, M. P.; Koolman, H. F.; Djuric, S. W.; Stahl, S. S. Electrochemical Aminoxyl-Mediated α-Cyanation of Secondary Piperidines for Pharmaceutical Building Block Diversification. J. Am. Chem. Soc. 2018, 140, 11227-11231. DOI:10.1021/jacs.8b08145
Wang, F.; Stahl, S. S. Merging Photochemistry with Electrochemistry: Functional Group Tolerant Electrochemical Amination of sp³ C–H Bonds. Angew. Chem. Int. Ed. 2019, 58, 6385-6390. DOI:10.1002/anie.201813960
Zhong, X.; Hoque, M. A.; Graaf, M. D.; Harper, K. C.; Wang, F.; Genders, J. D.; Stahl, S. S. Scalable Flow Electrochemical Alcohol Oxidation: Maintaining High Stereochemical Fidelity in the Synthesis of Levetiracetam. Org. Process Res. Dev. 2021, 25, 2601-2607. DOI: 10.1021/acs.oprd.1c00036
Hoque, M. A.; Twilton, J.; Zhu, J.; Graaf, M. D.; Harper, K. C.; Tuca, E.; DiLabio, G. A.; Stahl, S. S. Electrochemical PINOylation of Methylarenes: Improving the Scope and Utility of Benzylic Oxidation through Mediated Electrolysis. J. Am. Chem. Soc. 2022, 144, 15295-15302. DOI: 10.1021/jacs.2c05974
Electrocatalysts and Electrochemical Energy Storage and Conversion
- Developing stable organic electron-proton transfer mediators for use in energy storage and conversion application
- Investigating molecular catalysts for low-overpotential O2 reduction to H2O2 and water
- Developing and characterizing heterogeneous catalysts for energy conversion applications
This is an accordion element with a series of buttons that open and close related content panels.
Key References
Review Articles:
Anson, C. W.; Stahl, S. S. Mediated Fuel Cells: Soluble Redox Mediators and Their Applications to Electrochemical Reduction of O2 and Oxidation of H2, Alcohols, Biomass, and Complex Fuels. Chem. Rev. 2020, 120, 3749-3786. doi: 10.1021/acs.chemrev.9b00717
Speelman, A. L.; Gerken, J. B.; Heins, S. P.; Wiedner, E. S.; Stahl, S. S.; Appel, A. M. Determining Overpotentials for the Oxidation of Alcohols by Molecular Electrocatalysts in Non-Aqueous Solvents. Energy Environ. Sci. 2022, Advance Article. DOI: 10.1039/D2EE01458K
Representative Publications:
Gerken, J. B.; Stahl, S. S. High-Potential Electrocatalytic O2 Reduction with Nitroxyl/NOx Mediators: Implications for Fuel Cells and Aerobic Oxidation Catalysis. ACS Cent. Sci. 2015, 1, 234-243. DOI:10.1021/acscentsci.5b00163
Preger, Y.; Gerken, J. B.; Biswas, S.; Anson, C. W.; Johnson, M. R.; Root, T. W.; Stahl, S. S. Quinone-Mediated Electrochemical O2 Reduction Accessing High Power Density with an Off-Electrode Co-N/C Catalyst. Joule 2018, 2, 2722-2731. DOI:10.1016/joule.2018.09.010
Wang, Y.-H.; Schneider, P. E.; Goldsmith, Z. K.; Mondal, B.; Hammes-Schiffer, S.; Stahl, S. S. Brønsted Acid Scaling Relationships Enable Control Over Product Selectivity from O2 Reduction with a Mononuclear Cobalt Porphyrin Catalyst. ACS Cent. Sci. 2019, 5, 1024-1034. DOI:10.1021/acscentsci.9b00194
Wang, Y.-H.; Mondal, B.; Stahl, S. S. Molecular Cobalt Catalysts for O2 Reduction to H2O2: Benchmarking Performance via Rate–Overpotential Correlations. ACS Catal. 2020, 10, 12031-12039. DOI: 10.1021/acscatal.0c02197
Wang, F.; Li, W.; Wang, R.; Guo, T.; Sheng, H.; Fu, H.-C.; Stahl, S. S.; Jin, S. Modular Electrochemical Synthesis Using a Redox Reservoir Paired with Independent Half- Reactions. Joule 2021, 5, 149-165. DOI: 10.1016/j.joule.2020.11.011